1,100 research outputs found

    Optimal Motion of an Articulated Body in a Perfect Fluid

    Get PDF
    An articulated body can propel and steer itself in a perfect fluid by changing its shape only. Our strategy for motion planning for the submerged body is based on finding the optimal shape changes that produce a desired net locomotion; that is, motion planning is formulated as a nonlinear optimization problem

    The motion of solid bodies in potential flow with circulation: a geometric outlook

    Get PDF
    The motion of a circular body in 2D potential flow is studied using symplectic reduction. The equations of motion are obtained starting front a kinetic-energy type system on a space of embeddings and reducing by the particle relabelling symmetry group and the special Euclidian group. In the process, we give a geometric interpretation for the Kutta-Joukowski lift force in terms of the curvature of a connection on the original phase space

    Geometric, Variational Integrators for Computer Animation

    Get PDF
    We present a general-purpose numerical scheme for time integration of Lagrangian dynamical systems—an important computational tool at the core of most physics-based animation techniques. Several features make this particular time integrator highly desirable for computer animation: it numerically preserves important invariants, such as linear and angular momenta; the symplectic nature of the integrator also guarantees a correct energy behavior, even when dissipation and external forces are added; holonomic constraints can also be enforced quite simply; finally, our simple methodology allows for the design of high-order accurate schemes if needed. Two key properties set the method apart from earlier approaches. First, the nonlinear equations that must be solved during an update step are replaced by a minimization of a novel functional, speeding up time stepping by more than a factor of two in practice. Second, the formulation introduces additional variables that provide key flexibility in the implementation of the method. These properties are achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton principle, expressing time integration in a geometric manner. We demonstrate the applicability of our integrators to the simulation of non-linear elasticity with implementation details

    Structure-Preserving Discretization of Incompressible Fluids

    Get PDF
    The geometric nature of Euler fluids has been clearly identified and extensively studied over the years, culminating with Lagrangian and Hamiltonian descriptions of fluid dynamics where the configuration space is defined as the volume-preserving diffeomorphisms, and Kelvin's circulation theorem is viewed as a consequence of Noether's theorem associated with the particle relabeling symmetry of fluid mechanics. However computational approaches to fluid mechanics have been largely derived from a numerical-analytic point of view, and are rarely designed with structure preservation in mind, and often suffer from spurious numerical artifacts such as energy and circulation drift. In contrast, this paper geometrically derives discrete equations of motion for fluid dynamics from first principles in a purely Eulerian form. Our approach approximates the group of volume-preserving diffeomorphisms using a finite dimensional Lie group, and associated discrete Euler equations are derived from a variational principle with non-holonomic constraints. The resulting discrete equations of motion yield a structure-preserving time integrator with good long-term energy behavior and for which an exact discrete Kelvin's circulation theorem holds

    Discrete Lie Advection of Differential Forms

    Get PDF
    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC

    The Dynamics of a Rigid Body in Potential Flow with Circulation

    Get PDF
    We consider the motion of a two-dimensional body of arbitrary shape in a planar irrotational, incompressible fluid with a given amount of circulation around the body. We derive the equations of motion for this system by performing symplectic reduction with respect to the group of volume-preserving diffeomorphisms and obtain the relevant Poisson structures after a further Poisson reduction with respect to the group of translations and rotations. In this way, we recover the equations of motion given for this system by Chaplygin and Lamb, and we give a geometric interpretation for the Kutta-Zhukowski force as a curvature-related effect. In addition, we show that the motion of a rigid body with circulation can be understood as a geodesic flow on a central extension of the special Euclidian group SE(2), and we relate the cocycle in the description of this central extension to a certain curvature tensor.Comment: 28 pages, 2 figures; v2: typos correcte

    The Geometry and Dynamics of Interacting Rigid Bodies and Point Vortices

    Get PDF
    We derive the equations of motion for a planar rigid body of circular shape moving in a 2D perfect fluid with point vortices using symplectic reduction by stages. After formulating the theory as a mechanical system on a configuration space which is the product of a space of embeddings and the special Euclidian group in two dimensions, we divide out by the particle relabelling symmetry and then by the residual rotational and translational symmetry. The result of the first stage reduction is that the system is described by a non-standard magnetic symplectic form encoding the effects of the fluid, while at the second stage, a careful analysis of the momentum map shows the existence of two equivalent Poisson structures for this problem. For the solid-fluid system, we hence recover the ad hoc Poisson structures calculated by Shashikanth, Marsden, Burdick and Kelly on the one hand, and Borisov, Mamaev, and Ramodanov on the other hand. As a side result, we obtain a convenient expression for the symplectic leaves of the reduced system and we shed further light on the interplay between curvatures and cocycles in the description of the dynamics.Comment: 52 pages, 2 figure

    A Geometric Approach Towards Momentum Conservation

    Full text link
    In this work, a geometric discretization of the Navier-Stokes equations is sought by treating momentum as a covector-valued volume-form. The novelty of this approach is that we treat conservation of momentum as a tensor equation and describe a higher order approximation to this tensor equation. The resulting scheme satisfies mass and momentum conservation laws exactly, and resembles a staggered-mesh finite-volume method. Numerical test-cases to which the discretization scheme is applied are the Kovasznay flow, and lid-driven cavity flow

    Coronavirus peplomer charge heterogeneity

    Get PDF
    Recent advancements in viral hydrodynamics afford the calculation of the transport properties of particle suspensions from first principles, namely, from the detailed particle shapes. For coronavirus suspensions, for example, the shape can be approximated by beading (i) the spherical capsid and (ii) the radially protruding peplomers. The general rigid bead-rod theory allows us to assign Stokesian hydrodynamics to each bead. Thus, viral hydrodynamics yields the suspension rotational diffusivity, but not without first arriving at a configuration for the cationic peplomers. Prior work considered identical peplomers charged identically. However, a recent pioneering experiment uncovers remarkable peplomer size and charge heterogeneities. In this work, we use energy minimization to arrange the spikes, charged heterogeneously to obtain the coronavirus spike configuration required for its viral hydrodynamics. For this, we use the measured charge heterogeneity. We consider 20 000 randomly generated possibilities for cationic peplomers with formal charges ranging from 30 to 55. We find the configurations from energy minimization of all of these possibilities to be nearly spherically symmetric, all slightly oblate, and we report the corresponding breadth of the dimensionless rotational diffusivity, the transport property around which coronavirus cell attachment revolves.journal articl

    On the geometric character of stress in continuum mechanics

    Get PDF
    This paper shows that the stress field in the classical theory of continuum mechanics may be taken to be a covector-valued differential two-form. The balance laws and other fundamental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A geometrically attractive and covariant derivation of the balance laws from the principle of energy balance in terms of this stress is presented
    • 

    corecore